ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан квадрат $ABCD$ с центром $O$. Из точки $P$, лежащей на меньшей дуге $CD$ описанной около квадрата окружности, проведены касательные к его вписанной окружности, пересекающие сторону $CD$ в точках $M$ и $N$. Прямые $PM$ и $PN$ пересекают отрезки $BC$ и $AD$ соответственно в точках $Q$ и $R$. Докажите, что медиана треугольника $OMN$ из вершины $O$ перпендикулярна отрезку $QR$ и равна его половине. Решение |
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 501]
Окружность, построенная на стороне AD параллеллограмма ABCD как на диаметре, проходит через вершину B и середину стороны BC. Найдите углы параллелограмма.
В ромбе ABCD со стороной a угол при вершине А равен 60o, точки E и F являются серединами сторон AB и CD соответственно. Точка K лежит на стороне BC, отрезки AK и EF пересекаются в точке M. Найдите MK, если известно, что площадь четырёхугольника MKCF составляет площади ромба ABCD.
В ромбе ABCD со стороной a угол при вершине A равен 120o, точки E и F лежат на сторонах BC и AD соответственно. Отрезок EF и диагональ ромба AC пересекаются в точке M. Площади четырёхугольников BEFA и ECDF относятся как 1:2. Найдите EM.
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|