ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что $$ R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2). $$

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 66960

Темы:   [ Усеченная пирамида ]
[ Сферы (прочее) ]
[ Радикальная ось ]
[ Гомотетия помогает решить задачу ]
[ Изогональное сопряжение ]
[ Конус (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 5+
Классы: 10,11

В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что $$ R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2). $$
Прислать комментарий     Решение


Задача 56924

Темы:   [ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
[ Свойства симметрий и осей симметрии ]
[ Свойства биссектрис, конкуррентность ]
[ Изогональное сопряжение ]
Сложность: 6
Классы: 9,10,11

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем прямые AA1, BB1 и CC1 пересекаются в одной точке P. Докажите, что прямые AA2, BB2 и CC2, симметричные этим прямым относительно соответствующих биссектрис, тоже пересекаются в одной точке Q.
Прислать комментарий     Решение


Задача 65802

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Осевая и скользящая симметрии (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Дан треугольник ABC. Рассмотрим три окружности, первая из которых касается описанной окружности Ω в вершине A, а вписанной окружности ω внешним образом в какой-то точке A1. Аналогично определяются точки B1 и C1.
  а) Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
  б) Пусть A2 – точка касания ω со стороной BC. Докажите, что прямые AA1 и AA2 симметричны относительно биссектрисы угла A.

Прислать комментарий     Решение

Задача 110781

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Окружность, вписанная в угол ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Изогональное сопряжение ]
Сложность: 5+
Классы: 10

Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 109499

Темы:   [ Точка Торричелли ]
[ Симметрия помогает решить задачу ]
[ Свойства биссектрис, конкуррентность ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .