ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Некоторые неотрицательные числа $a$, $b$, $c$ удовлетворяют равенству $a+b+c=2\sqrt{abc}$. Докажите, что $bc\geqslant b+c$.

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 590]      



Задача 61372

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство  ( + )8 ≥ 64xy(x + y)²   (x, y ≥ 0).

Прислать комментарий     Решение

Задача 64479

Темы:   [ Тригонометрические неравенства ]
[ Неравенство Коши ]
Сложность: 3
Классы: 9,10,11

Для каких значений x выполняется неравенство  

Прислать комментарий     Решение

Задача 65683

Темы:   [ Обратные тригонометрические функции ]
[ Неравенство Коши ]
Сложность: 3
Классы: 9,10,11

Существует ли такое значение x, что выполняется равенство  arcsin2x + arccos2x = 1?

Прислать комментарий     Решение

Задача 65917

Темы:   [ Уравнения высших степеней (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 10,11

Имеет ли отрицательные корни уравнение   x4 – 4x³ – 6x² – 3x + 9 = 0?

Прислать комментарий     Решение

Задача 67033

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9,10,11

Некоторые неотрицательные числа $a$, $b$, $c$ удовлетворяют равенству $a+b+c=2\sqrt{abc}$. Докажите, что $bc\geqslant b+c$.
Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .