ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1.

   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 411]      



Задача 64857

Темы:   [ Теория игр (прочее) ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 9,10,11

  В некотором государстве ценятся золотой и платиновый песок. Золото можно менять на платину, а платину на золото по курсу, который определяется натуральными числами g и p так: x граммов золотого песка равноценны y граммам платинового, если  xp = yg  (числа x и y могут быть нецелыми). Сейчас у банкира есть по килограмму золотого и платинового песка, а  g = p = 1001.  Государство обещает каждый день уменьшать одно из чисел g и p на единицу, так что через 2000 дней они оба станут единицами; но последовательность уменьшений неизвестна. Может ли банкир каждый день менять песок так, чтобы в конце гарантированно получить хотя бы по 2 кг каждого песка?

Прислать комментарий     Решение

Задача 66584

Темы:   [ Ориентированные графы ]
[ Индукция ]
[ Теория алгоритмов (прочее) ]
Сложность: 5
Классы: 8,9,10,11

В некотором государстве 32 города, каждые два из которых соединены дорогой с односторонним движением. Министр путей сообщения, тайный злодей, решил так организовать движение, что, покинув любой город, в него нельзя будет вернуться. Для этого он каждый день, начиная с 1 июня 2021 года, может менять направление движения на одной из дорог. Докажите, что он сможет добиться своего к 2022 году (то есть за 214 дней).
Прислать комментарий     Решение


Задача 66733

Темы:   [ Малые шевеления ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 8,9,10,11

На числовой оси отмечено бесконечно много точек с натуральными координатами. Когда по оси катится колесо, каждая отмеченная точка, по которой проехало колесо, оставляет на нём точечный след. Докажите, что можно выбрать такое действительное $R$, что если прокатить по оси, начиная из нуля, колесо радиуса $R$, то на каждой дуге колеса величиной в $1^\circ$ будет след хотя бы одной отмеченной точки.

Прислать комментарий     Решение

Задача 66887

Темы:   [ Теория игр (прочее) ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Петя и Вася по очереди пишут на доску дроби вида $1/n$, где $n$ — натуральное, начинает Петя. Петя за ход пишет только одну дробь, а Вася за первый ход — одну, за второй ход — две, и так каждым следующим ходом на одну дробь больше. Вася хочет, чтобы после какого-то хода сумма всех дробей на доске была натуральным числом. Сможет ли Петя помешать ему?
Прислать комментарий     Решение


Задача 67155

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Шахматные доски и шахматные фигуры ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Теорема Пика ]
Сложность: 5
Классы: 8,9,10,11

Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1.
Прислать комментарий     Решение


Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .