Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 411]
|
|
Сложность: 5 Классы: 10,11
|
Квадрат ABCD разрезан на одинаковые прямоугольники с целыми длинами сторон. Фигура F является объединением всех прямоугольников, имеющих общие точки с диагональю AC. Докажите, что AC делит площадь фигуры F пополам.
|
|
Сложность: 5 Классы: 10,11
|
У Кости была кучка из 100 камешков. Каждым ходом он делил какую-то из кучек на две меньших, пока у него в итоге не оказалось
100 кучек по одному камешку. Докажите, что
а) в какой-то момент в каких-то 30 кучках было в сумме ровно 60 камешков;
б) в какой-то момент в каких-то 20 кучках было в сумме ровно 60 камешков;
в) Костя мог действовать так, чтобы ни в какой момент не нашлось 19 кучек, в которых в сумме ровно 60 камешков.
|
|
Сложность: 5+ Классы: 8,9,10,11
|
В соревнованиях по n-борью участвуют 2n человек. Для
каждого спортсмена известна его сила в каждом из видов программы. Соревнования
проходят следующим образом: сначала все спортсмены участвуют в первом виде
программы и лучшая половина из них выходит в следующий круг. Эта половина
принимает участие в следующем виде и половина из них выходит в следующий круг,
и т.д., пока в n-м виде программы не будет определен победитель. Назовем
спортсмена возможным победителем, если можно так расставить виды спорта в программе, что он станет победителем.
а) Докажите, что может так случиться, что хотя бы половина спортсменов является возможными победителями.
б) Докажите, что число возможных победителей не превосходит 2n – n.
в) Докажите, что может так случиться, что возможных
победителей ровно 2n – n.
|
|
Сложность: 5+ Классы: 7,8,9
|
Банкир узнал, что среди одинаковых на вид монет одна — фальшивая (более
легкая). Он попросил эксперта определить эту монету с помощью чашечных весов
без гирь, причем потребовал, чтобы каждая монета участвовала во взвешиваниях
не более двух раз. Какое наибольшее число монет может быть у банкира, чтобы
эксперт заведомо смог выделить фальшивую за
n взвешиваний?
|
|
Сложность: 5+ Классы: 9,10,11
|
На столе лежат купюры
достоинством 1, 2,
.. ,
2
n тугриков. Двое ходят по очереди.
Каждым ходом игрок снимает со стола две купюры, большую отдает
сопернику, а меньшую забирает себе. Каждый стремится получить как
можно больше денег. Сколько тугриков получит начинающий при
правильной игре?
Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 411]