ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике $ABC$ высоты $BE$ и $CF$ пересекаются в точке $H$, точка $M$ — середина стороны $BC$, а $X$ — точка пересечения внутренних касательных к окружностям, вписанным в треугольники $BMF$ и $CME$. Докажите, что точки $X$, $M$ и $H$ лежат на одной прямой. ![]() |
Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 2393]
На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на этой планете?
Например, для тетраэдра ($\text{В}=4$, $\text{Р}=6$, $\text{Т}=3$) выполняется равенство, а для треугольной призмы ($\text{В}=6$, $\text{Р}=9$, $\text{Т}=1$) или куба ($\text{В}=8$, $\text{Р}=12$, $\text{Т}=0$) имеет место строгое неравенство.
Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 2393] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |