Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ проведена высота $AH$. Точки $M$ и $N$ – середины отрезков $BH$ и $CH$. Докажите, что точка пересечения перпендикуляров, опущенных из точек $M$ и $N$ на прямые $AB$ и $AC$ соответственно, равноудалена от точек $B$ и $C$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан вписанный четырёхугольник $ABCD$. Пусть $M_{ac}$ – середина диагонали $AC$; $H_d$, $H_b$ – ортоцентры треугольников $ABC$, $ADC$ соответственно; $P_d$, $P_b$ – проекции $H_d$ и $H_b$ на $BM_{ac}$ и $DM_{ac}$ соответственно.
Аналогично определим $P_a$, $P_c$ для диагонали $BD$. Докажите, что $P_a$, $P_b$, $P_c$, $P_d$ лежат на одной окружности.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ высоты $AH_A$, $BH_B$ и
$CH_C$ пересекаются в точке $H$. Через точки, в которых окружность
радиуса $HH_A$ с центром $H$ пересекает отрезки $BH$ и $CH$, проведена
прямая $\ell_A$. Аналогично проведены прямые $\ell_B$ и
$\ell_C$. Докажите, что точка пересечения высот треугольника,
образованного прямыми $\ell_A$, $\ell_B$, $\ell_C$, совпадает с центром
окружности, вписанной в треугольник $ABC$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Петя и Вася независимо друг от друга разбивают белую
клетчатую доску $100\times 100$ на произвольные группы клеток, каждая
из чётного (но не обязательно все из одинакового) числа клеток, каждый
– на свой набор групп. Верно ли, что после этого всегда можно
покрасить по половине клеток в каждой группе из разбиения Пети в
чёрный цвет так, чтобы в каждой группе из разбиения Васи было поровну
чёрных и белых клеток?
Страница: 1
2 >> [Всего задач: 6]