ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Михайлов И.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 67316

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Перенос помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ проведена высота $AH$. Точки $M$ и $N$  – середины отрезков $BH$ и $CH$. Докажите, что точка пересечения перпендикуляров, опущенных из точек $M$ и $N$ на прямые $AB$ и $AC$ соответственно, равноудалена от точек $B$ и $C$.
Прислать комментарий     Решение


Задача 67100

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$.
Прислать комментарий     Решение


Задача 67226

Темы:   [ Ортоцентр и ортотреугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырёхугольник $ABCD$. Пусть $M_{ac}$ – середина диагонали $AC$; $H_d$, $H_b$ – ортоцентры треугольников $ABC$, $ADC$ соответственно; $P_d$, $P_b$ – проекции $H_d$ и $H_b$ на $BM_{ac}$ и $DM_{ac}$ соответственно. Аналогично определим $P_a$, $P_c$ для диагонали $BD$. Докажите, что $P_a$, $P_b$, $P_c$, $P_d$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67324

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
[ Четыре точки, лежащие на одной окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ высоты $AH_A$, $BH_B$ и $CH_C$ пересекаются в точке $H$. Через точки, в которых окружность радиуса $HH_A$ с центром $H$ пересекает отрезки $BH$ и $CH$, проведена прямая $\ell_A$. Аналогично проведены прямые $\ell_B$ и $\ell_C$. Докажите, что точка пересечения высот треугольника, образованного прямыми $\ell_A$, $\ell_B$, $\ell_C$, совпадает с центром окружности, вписанной в треугольник $ABC$.
Прислать комментарий     Решение


Задача 67325

Темы:   [ Обход графов ]
[ Теория графов (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Петя и Вася независимо друг от друга разбивают белую клетчатую доску $100\times 100$ на произвольные группы клеток, каждая из чётного (но не обязательно все из одинакового) числа клеток, каждый  – на свой набор групп. Верно ли, что после этого всегда можно покрасить по половине клеток в каждой группе из разбиения Пети в чёрный цвет так, чтобы в каждой группе из разбиения Васи было поровну чёрных и белых клеток?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .