ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Последовательность натуральных чисел  a1 < a2 < a3 < ... < an < ...  такова, что каждое натуральное число либо входит в последовательность, либо представимо в виде суммы двух членов последовательности, быть может, одинаковых. Докажите, что  ann²  для любого  n = 1, 2, 3, ...

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 367]      



Задача 103787

Темы:   [ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Подсчет двумя способами ]
[ Принцип крайнего (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9

В одной из школ 20 раз проводился кружок по астрономии. На каждом занятии присутствовало ровно пять школьников, причём никакие два школьника не встречались на кружке более одного раза. Докажите, что всего на кружке побывало не менее 20 школьников.

Прислать комментарий     Решение


Задача 32783

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

За круглым столом сидят 33 представителя четырех племен: люди, гномы, эльфы и гоблины. Известно, что люди не сидят рядом с гоблинами, а эльфы не сидят рядом с гномами. Докажите, что какие-то два представителя одного и того же племени сидят рядом.

Прислать комментарий     Решение


Задача 73697

Темы:   [ Принцип Дирихле (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Последовательность натуральных чисел  a1 < a2 < a3 < ... < an < ...  такова, что каждое натуральное число либо входит в последовательность, либо представимо в виде суммы двух членов последовательности, быть может, одинаковых. Докажите, что  ann²  для любого  n = 1, 2, 3, ...

Прислать комментарий     Решение

Задача 21985

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8

В бригаде 7 человек и их суммарный возраст - 332 года. Докажите, что из них можно выбрать трех человек, сумма возрастов которых не меньше 142 лет.

Прислать комментарий     Решение


Задача 78508

Темы:   [ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .