ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каких n правильный n-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях? ![]() |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 144]
Докажите, что если число n не является степенью простого числа, то существует выпуклый n-угольник со сторонами длиной 1, 2,..., n, все углы которого равны.
При каких n правильный n-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях?
Пусть A1, B1 и C1 — основания высот AA1, BB1 и CC1 треугольника ABC. Докажите, что прямые Эйлера треугольников AB1C1, BA1C1 и CA1B1 пересекаются на окружности девяти точек треугольника ABC.
На сторонах AB, BC и CA равностороннего треугольника ABC отложены равные отрезки AD, BE и CF. Точки D, E и F соединены отрезками.
Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360°/n вокруг некоторой точки.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 144] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |