Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 144]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан квадрат со стороной 10. Разрежьте его на 100 равных четырёхугольников, каждый из которых вписан в окружность диаметра
Известно, что вершины квадрата T принадлежат прямым, содержащим
стороны квадрата P, а вписанная окружность квадрата T совпадает
с описанной окружностью квадрата P. Найдите углы восьмиугольника,
образованного вершинами квадрата P и точками касания окружности со
сторонами квадрата T, и величины дуг, на которые вершины восьмиугольника
делят окружность.
Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.
Докажите, что середины его сторон лежат в вершинах квадрата.
На стороне AB квадрата ABCD отмечена точка K, а на стороне BC – точка L так, что KB = LC. Отрезки AL и CK пересекаются в точке P. Докажите, что отрезки DP и KL перпендикулярны.
|
|
Сложность: 4- Классы: 8,9,10
|
В ромбе ABCD ∠А = 120°. На сторонах BC и CD взяты точки M и N так, что ∠NAM = 30°.
Докажите, что центр описанной окружности треугольника NAM лежит на диагонали ромба.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 144]