ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  а) Выбраны 6 различных цветов; требуется раскрасить 6 граней куба, каждую в особый цвет из числа избранных. Сколькими геометрически различными способами можно это сделать? Геометрически различными называются две такие расцветки, которые нельзя совместить одну с другой при помощи вращений куба вокруг его центра.
  б) Решить ту же задачу для случая раскраски граней додекаэдра в 12 различных цветов.

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 35269

Темы:   [ Комбинаторика орбит ]
[ Правило произведения ]
[ Перебор случаев ]
Сложность: 2+
Классы: 7,8,9

Гайка имеет форму правильной шестиугольной призмы. Каждая боковая грань гайки покрашена в один из трёх цветов: белый, красный или синий, причём соседние грани выкрашены в разные цвета. Сколько существует различных по раскраске гаек? (Для раскраски гайки не обязательно использовать все три краски.)

Прислать комментарий     Решение

Задача 76432

Темы:   [ Комбинаторика орбит ]
[ Раскраски ]
[ Правило произведения ]
[ Правильные многогранники (прочее) ]
[ Куб ]
Сложность: 3+
Классы: 10,11

  а) Выбраны 6 различных цветов; требуется раскрасить 6 граней куба, каждую в особый цвет из числа избранных. Сколькими геометрически различными способами можно это сделать? Геометрически различными называются две такие расцветки, которые нельзя совместить одну с другой при помощи вращений куба вокруг его центра.
  б) Решить ту же задачу для случая раскраски граней додекаэдра в 12 различных цветов.

Прислать комментарий     Решение

Задача 109198

Темы:   [ Комбинаторика орбит ]
[ Классическая комбинаторика (прочее) ]
[ Геометрические интерпретации в алгебре ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Скажем, что колода из 52 карт сложена правильно, если каждая пара лежащих рядом карт совпадает по масти или достоинству, то же верно для верхней и нижней карты, и наверху лежит туз пик. Докажите, что число способов сложить колоду правильно
  а) делится на 12!;
  б) делится на 13!.

Прислать комментарий     Решение

Задача 60373

Темы:   [ Перестановки и подстановки (прочее) ]
[ Комбинаторика орбит ]
Сложность: 2+
Классы: 7,8,9

Семнадцать девушек водят хоровод. Сколькими различными способами они могут встать в круг?

Прислать комментарий     Решение

Задача 60374

Темы:   [ Перестановки и подстановки (прочее) ]
[ Комбинаторика орбит ]
Сложность: 2+
Классы: 8,9

Сколько существует ожерелий, составленных из 17 различных бусинок?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .