ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Разрезать куб на три равные пирамиды.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 302]      



Задача 35591

Темы:   [ Шахматная раскраска ]
[ Куб ]
Сложность: 3
Классы: 7,8,9

Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра?
Прислать комментарий     Решение


Задача 65435

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Куб, стоящий на плоскости, несколько раз перекатили через его рёбра, после чего он вернулся на прежнее место.
Обязательно ли он стоит на той же грани?

Прислать комментарий     Решение

Задача 77991

Темы:   [ Разные задачи на разрезания ]
[ Куб ]
Сложность: 3
Классы: 10,11

Разрезать куб на три равные пирамиды.
Прислать комментарий     Решение


Задача 78151

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Куб ]
Сложность: 3
Классы: 8,9

Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?
Прислать комментарий     Решение


Задача 86975

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
Сложность: 3
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . а) Докажите, что AA1 и BC – скрещивающиеся прямые; б) постройте их общий перпендикуляр; в) найдите расстояние между этими прямыми.
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .