ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник A0B0C0. На его сторонах A0B0, B0C0, C0A0 взяты точки C1, A1, B1 соответственно. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2, и вообще, на сторонах AnBn, BnCn, CnAn, треугольника AnBnCn взяты точки Cn + 1, An + 1, Bn + 1. Известно, что

$\displaystyle {\frac{A_0B_1}{B_1C_0}}$ = $\displaystyle {\frac{B_0C_1}{C_1A_0}}$ = $\displaystyle {\frac{C_0A_1}{A_1B_0}}$ = k,$\displaystyle {\frac{A_1B_2}{B_2C_1}}$ = $\displaystyle {\frac{B_1C_2}{C_2A_1}}$ = $\displaystyle {\frac{C_1A_2}{A_2B_1}}$ = $\displaystyle {\frac{1}{k^2}}$
и вообще,

Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 57757

Тема:   [ Теорема о группировке масс ]
Сложность: 5
Классы: 9

На сторонах AB, BC и CA треугольника ABC взяты точки C1, A1 и B1 так, что прямые CC1, AA1 и BB1 пересекаются в некоторой точке O. Докажите, что:
а) $ {\frac{CO}{OC_1}}$ = $ {\frac{CA_1}{A_1B}}$ + $ {\frac{CB_1}{B_1A}}$;
б) $ {\frac{AO}{OA_1}}$ . $ {\frac{BO}{OB_1}}$ . $ {\frac{CO}{OC_1}}$ = $ {\frac{AO}{OA_1}}$ + $ {\frac{BO}{OB_1}}$ + $ {\frac{CO}{OC_1}}$ + 2$ \ge$8.
Прислать комментарий     Решение


Задача 57758

Тема:   [ Теорема о группировке масс ]
Сложность: 5
Классы: 9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1 так, что BA1/A1C = CB1/B1A = AC1/C1B. Докажите, что центры масс треугольников ABC и A1B1C1 совпадают.
Прислать комментарий     Решение


Задача 57759

Тема:   [ Теорема о группировке масс ]
Сложность: 5
Классы: 9

В середины сторон треугольника ABC помещены точки, массы которых равны длинам сторон. Докажите, что центр масс этой системы точек расположен в центре вписанной окружности треугольника с вершинами в серединах сторон треугольника ABC.
Замечание. Центр масс системы точек, рассматриваемой в задаче 14.12.1 совпадает с центром масс фигуры, изготовленной из трех тонких стержней одинаковой толщины. Действительно, при нахождении центра масс стержень можно заменить на точку, расположенную в середине стержня и имеющую массу, равную массе стержня. Ясно также, что масса стержня пропорциональна его длине.
Прислать комментарий     Решение


Задача 57760

Тема:   [ Теорема о группировке масс ]
Сложность: 5
Классы: 9

На окружности дано n точек. Через центр масс n - 2 точек проводится прямая, перпендикулярная хорде, соединяющей две оставшиеся точки. Докажите, что все такие прямые пересекаются в одной точке.
Прислать комментарий     Решение


Задача 78059

Тема:   [ Теорема о группировке масс ]
Сложность: 5+
Классы: 9,10,11

Дан треугольник A0B0C0. На его сторонах A0B0, B0C0, C0A0 взяты точки C1, A1, B1 соответственно. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2, и вообще, на сторонах AnBn, BnCn, CnAn, треугольника AnBnCn взяты точки Cn + 1, An + 1, Bn + 1. Известно, что

$\displaystyle {\frac{A_0B_1}{B_1C_0}}$ = $\displaystyle {\frac{B_0C_1}{C_1A_0}}$ = $\displaystyle {\frac{C_0A_1}{A_1B_0}}$ = k,$\displaystyle {\frac{A_1B_2}{B_2C_1}}$ = $\displaystyle {\frac{B_1C_2}{C_2A_1}}$ = $\displaystyle {\frac{C_1A_2}{A_2B_1}}$ = $\displaystyle {\frac{1}{k^2}}$
и вообще,

Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n.
Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .