ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья на тему "Индукция" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Отрезок длиной 3n разбивается на три равные части. Первая и третья из них называются отмеченными. Каждый из отмеченных отрезков разбивается на три части, из которых первая и третья снова называются отмеченными и т.д. до тех пор, пока не получатся отрезки длиной 1. Концы всех отмеченных отрезков называются отмеченными точками. Доказать, что для любого целого k(1k3n) можно найти две отмеченные точки, расстояние между которыми равно k. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 411]
На доске написаны 2$n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2$n$ последовательных чисел.
Докажите, что для любого натурального n ≥ 2 справедливо неравенство: .
В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 411] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|