ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком, по которому многоугольник складывается. Доказать, что периметр многоугольника, получающегося после складывания, меньше периметра исходного многоугольника.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 58160

Темы:   [ Четность и нечетность ]
[ Произвольные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
  а) (2n+1)-угольника;  б) 2n-угольника?

Прислать комментарий     Решение

Задача 78154

Темы:   [ Неравенство треугольника (прочее) ]
[ Произвольные многоугольники ]
Сложность: 3
Классы: 9,10

Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком, по которому многоугольник складывается. Доказать, что периметр многоугольника, получающегося после складывания, меньше периметра исходного многоугольника.
Прислать комментарий     Решение


Задача 55574

Темы:   [ Свойства симметрий и осей симметрии ]
[ Произвольные многоугольники ]
Сложность: 3+
Классы: 8,9

Докажите, что ось симметрии  а) треугольника,  б) (2k+1)-угольника проходит через его вершину.

Прислать комментарий     Решение

Задача 55575

Темы:   [ Свойства симметрий и осей симметрии ]
[ Произвольные многоугольники ]
Сложность: 3+
Классы: 8,9

Докажите, что если ось симметрии а) четырёхугольника, б) 2m-угольника проходит через какую-нибудь его вершину, то она проходит и через другую вершину.

Прислать комментарий     Решение


Задача 98605

Темы:   [ Теория игр (прочее) ]
[ Произвольные многоугольники ]
Сложность: 3+
Классы: 8,9

Двое играющих по очереди красят стороны n-угольника. Первый может покрасить сторону, которая граничит с нулём или двумя покрашенными сторонами, второй – сторону, которая граничит с одной покрашенной стороной. Проигрывает тот, кто не может сделать хода. При каких n второй может выиграть, как бы ни играл первый?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .