Страница:
<< 87 88 89 90
91 92 93 >> [Всего задач: 1547]
|
|
Сложность: 5 Классы: 9,10,11
|
Даны четыре окружности
S1,
S2,
S3,
S4. Пусть
S1
и
S2 пересекаются в точках
A1 и
A2,
S2 и
S3 —
в точках
B1 и
B2,
S3 и
S4 — в точках
C1 и
C2,
S4 и
S1 — в точках
D1 и
D2 (рис.). Докажите, что
если точки
A1,
B1,
C1,
D1 лежат на одной окружности
S
(или прямой), то и точки
A2,
B2,
C2,
D2
лежат на одной окружности (или прямой).
|
|
Сложность: 5 Классы: 8,9,10,11
|
Выпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$.
|
|
Сложность: 5 Классы: 9,10,11
|
На плоскости даны две окружности $\omega_{1}$ и $\omega_{2}$, касающиеся внешним образом. На окружности $\omega_{1}$ выбран диаметр $AB$, а на окружности $\omega_{2}$ выбран диаметр $CD$. Рассмотрим всевозможные положения точек $A$, $B$, $C$ и $D$, при которых $ABCD$ — выпуклый описанный четырёхугольник, и пусть $I$ — центр его вписанной окружности. Найдите геометрическое место точек $I$.
|
|
Сложность: 5 Классы: 9,10,11
|
Пусть $E$ – проекция вершины $C$ прямоугольника $ABCD$ на диагональ $BD$. Докажите, что общие внешние касательные к окружностям $AEB$ и $AED$ пересекаются на окружности $AEC$.
|
|
Сложность: 5 Классы: 10,11
|
Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на
основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что
середины отрезков, соединяющих вершины соседних треугольников, образуют
правильный шестиугольник.
Страница:
<< 87 88 89 90
91 92 93 >> [Всего задач: 1547]