ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан произвольный набор из +1 и -1 длиной 2k. Из него получается новый по следующему правилу: каждое число умножается на следующее за ним; последнее 2k-тое число умножается на первое. С новым набором из 1 и -1 проделывается то же самое и т.д. Доказать, что в конце концов получается набор, состоящий из одних единиц.

   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 411]      



Задача 66560

Темы:   [ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 4
Классы: 8,9,10

К Ивану на день рождения пришли $3 n$ гостей. У Ивана есть $3 n$ цилиндров с написанными сверху буквами А, Б и В, по $n$ штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на $3$, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно $(3n)!$ различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)
Прислать комментарий     Решение


Задача 67081

Темы:   [ Процессы и операции ]
[ Индукция (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Автор: Шень А.Х.

На доске написана буква А. Разрешается в любом порядке и количестве:
  а) приписывать А слева;
  б) приписывать Б справа;
  в) одновременно приписывать Б слева и А справа.
Например, БААБ так получить можно  (A → БAA → БААБ),  а АББА – нельзя. Докажите, что при любом натуральном $n$ половину слов длины $n$ получить можно, а другую половину – нельзя.

Прислать комментарий     Решение

Задача 73604

 [Числа-автоморфы]
Темы:   [ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Число 76 обладает таким любопытным свойством: последние две цифры числа  76² = 5776  – это снова 76.
  а) Есть ли ещё такие двузначные числа?
  б) Найдите все такие трёхзначные числа A, что последние три цифры числа A² составляют число А.
  в) Существует ли такая бесконечная последовательность цифр a1, a2, a3, ..., что для любого натурального n квадрат числа anan–1...a2a1 оканчивается на эти же n цифр? Очевидный ответ  a1 = 1  и  0 = a2 = a3 = ...  мы исключаем.

Прислать комментарий     Решение

Задача 73615

Темы:   [ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 7,8,9

В таблице размерами m×n расставлены числа – в каждой клетке по числу. В каждом столбце подчеркнуто k наибольших чисел  (k ≤ m),  в каждой строке – l наибольших чисел  (l ≤ n).  Докажите, что по крайней мере kl чисел подчёркнуты дважды.

Прислать комментарий     Решение

Задача 78272

Темы:   [ Рекуррентные соотношения ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Дан произвольный набор из +1 и -1 длиной 2k. Из него получается новый по следующему правилу: каждое число умножается на следующее за ним; последнее 2k-тое число умножается на первое. С новым набором из 1 и -1 проделывается то же самое и т.д. Доказать, что в конце концов получается набор, состоящий из одних единиц.
Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .