Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 694]
|
|
Сложность: 4+ Классы: 8,9,10
|
Назовем усреднением последовательности
ak действительных чисел последовательность
a'k с общим членом
a'k=
.
Рассмотрим последовательности:
ak ,
a'k – ее усреднение,
a''k –
усреднение последовательности
a'k , и т.д. Если все эти последовательности состоят из целых
чисел, то будем говорить, что последовательность
ak – хорошая. Докажите, что если
последовательность
xk – хорошая, то последовательность
xk2 – тоже хорошая.
|
|
Сложность: 4+ Классы: 9,10,11
|
Числовая последовательность
a0 ,
a1 ,
a2 , такова, что при всех неотрицательных
m и
n
(
m
n ) выполняется соотношение
am+n+am-n=
(a2m+a2n).
Найдите
a1995
, если
a1=1
.
|
|
Сложность: 5- Классы: 8,9,10
|
Дано:
$$ a_1=1,a_k=\left[\sqrt{a_1+a_2+\dots +a_{k-1}}\right].$$
Найти $a_{1000}$.
Примечание. $\left[A\right]$ — целая часть $A$.
|
|
Сложность: 5- Классы: 9,10,11
|
Дано:
Найти
a1966.
|
|
Сложность: 5- Классы: 8,9,10,11
|
Для какого наибольшего
n можно придумать две бесконечные в обе стороны
последовательности
A и
B такие, что любой кусок последовательности
B
длиной
n содержится в
A,
A имеет период 1995, а
B этим свойством не
обладает (непериодична или имеет период другой длины)?
Комментарий.
Последовательности могут состоять из произвольных символов. Речь идет о
минимальном периоде.
Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 694]