ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 383]      



Задача 73723

Темы:   [ Связность и разложение на связные компоненты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10

Между некоторыми из 2n городов установлено воздушное сообщение, причём каждый город связан (беспосадочными рейсами) не менее чем с n другими.
  а) Докажите, что если отменить любые  n – 1  рейсов, то всё равно из любого города можно добраться в любой другой на самолётах (с пересадками).
  б) Укажите все случаи, когда связность нарушается при отмене n рейсов.

Прислать комментарий     Решение

Задача 78825

Темы:   [ Обход графов ]
[ Принцип Дирихле (прочее) ]
[ Обратный ход ]
Сложность: 4
Классы: 8,9,10

В стране Мара расположено несколько замков. Из каждого замка ведут три дороги. Из какого-то замка выехал рыцарь. Странствуя по дорогам, он из каждого замка, стоящего на его пути, поворачивает либо направо, либо налево по отношению к дороге, по которой приехал. Рыцарь никогда не сворачивает в ту сторону, в которую он свернул перед этим. Доказать, что когда-нибудь он вернётся в исходный замок.

Прислать комментарий     Решение

Задача 79307

Темы:   [ Связность и разложение на связные компоненты ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10

В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.

Прислать комментарий     Решение

Задача 97994

Темы:   [ Обход графов ]
[ Классическая комбинаторика (прочее) ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 9,10

В стране 1988 городов и 4000 дорог.
Докажите, что можно указать кольцевой маршрут, проходящий не более, чем через 20 городов (каждая дорога соединяет два города).

Прислать комментарий     Решение

Задача 98270

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

Докажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек.

 
Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .