ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p ![]() |
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 2440]
Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
Можно ли в кружочках расставить все цифры от 0 до 9 так, чтобы сумма трёх чисел по любому из шести отрезков была бы одной и той же?
Дано натуральное число n. Рассматриваются такие тройки различных
натуральных чисел (a, b, c), что a + b + c = n. Возьмём наибольшую возможную такую систему троек, что никакие две тройки системы не имеют общих элементов. Число троек в этой системе обозначим через K(n). Докажите, что
Рассмотрим все возможные наборы чисел из множества {1, 2, 3, ..., n}, не содержащие двух соседних чисел.
Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 2440] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |