ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На столе лежат в ряд пять монет: средняя  — вверх орлом, а остальные  — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1308]      



Задача 88018

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2-
Классы: 5,6,7

На столе лежат в ряд пять монет: средняя  — вверх орлом, а остальные  — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?
Прислать комментарий     Решение


Задача 88113

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 2-
Классы: 5,6,7

Попробуйте прочесть слово, изображённое на рис. 1, пользуясь ключом (см. рис. 2).

Прислать комментарий     Решение

Задача 88127

Тема:   [ Взвешивания ]
Сложность: 2-
Классы: 5,6,7

Из набора гирек с массами 1, 2, ..., 101 г потерялась гирька массой 19 г. Можно ли оставшиеся 100 гирек разложить на две кучки по 50 гирек в каждой так, чтобы массы обеих кучек были одинаковы?
Прислать комментарий     Решение


Задача 88150

Тема:   [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 5,6,7

Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника  — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника  — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?
Прислать комментарий     Решение


Задача 88172

Темы:   [ Ребусы ]
[ Арифметические действия. Числовые тождества ]
Сложность: 2-
Классы: 5,6,7

В равенстве 101 – 102 = 1 передвиньте одну цифру так, чтобы оно стало верным.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .