ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли 77 телефонов соединить между собой проводами так, чтобы каждый был соединён ровно с пятнадцатью?

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 123]      



Задача 87972

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3-
Классы: 6,7,8

Докажите, что в любом графе
  а) сумма степеней всех вершин равна удвоенному числу рёбер (и следовательно, чётна);
  б) число вершин нечётной степени чётно.

Прислать комментарий     Решение

Задача 98656

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3-
Классы: 6,7

У марсиан бывает произвольное число рук. Однажды все марсиане взялись за руки так, что свободных рук не осталось.
Докажите, что число марсиан, у которых нечётное число рук, чётно.

Прислать комментарий     Решение

Задача 32006

Темы:   [ Подсчет двумя способами ]
[ Степень вершины ]
[ Куб ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

а) Можно ли занумеровать рёбра куба натуральными числами от 1 до 12 так, чтобы для каждой вершины куба сумма номеров рёбер, которые в ней сходятся, была одинаковой?

б) Аналогичный вопрос, если расставлять по рёбрам куба числа –6, –5, –4, –3, –2, –1, 1, 2, 3, 4, 5, 6.

Прислать комментарий     Решение

Задача 88021

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3
Классы: 5,6,7,8

Можно ли 77 телефонов соединить между собой проводами так, чтобы каждый был соединён ровно с пятнадцатью?

Прислать комментарий     Решение

Задача 88268

Темы:   [ Подсчет двумя способами ]
[ Степень вершины ]
Сложность: 3
Классы: 5,6,7

На кошачьей выставке каждый посетитель погладил ровно трех кошек. При этом оказалось, что каждую кошку погладили ровно три посетителя.

Докажите, что посетителей было ровно столько же, сколько кошек.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 123]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .