ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Двое играют в двойные шахматы: все фигуры ходят как обычно, но каждый делает по два шахматных хода подряд. Докажите, что первый может как минимум сделать ничью.

Вниз   Решение


Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

ВверхВниз   Решение


В пяти корзинах А, Б, В, Г и Д лежат яблоки пяти разных сортов. В каждой из корзин А и Б находятся яблоки 3 и 4 сорта, в корзине В — 2 и 3, в корзине Г — 4 и 5, в корзине Д — 1 и 5. Занумеруйте корзины так, чтобы в первой корзине имелись яблоки 1-го сорта (как минимум одно), во второй корзине — яблоки 2-го сорта и т.д.

ВверхВниз   Решение


В языке Древнего Племени алфавит состоит всего из двух букв: "М" и "О". Два слова являются синонимами, если одно из другого можно получить при помощи исключения или добавления буквосочетаний "МО" и "ООММ", повторяемых в любом порядке и любом количестве. Являются ли синонимами в языке Древнего Племени слова "ОММ" и "МОО"?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 199]      



Задача 30767

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 6,7

Разменный автомат меняет одну монету на пять других. Можно ли с его помощью разменять металлический рубль на 26 монет?

Прислать комментарий     Решение


Задача 88026

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 5,6,7,8

В языке Древнего Племени алфавит состоит всего из двух букв: "М" и "О". Два слова являются синонимами, если одно из другого можно получить при помощи исключения или добавления буквосочетаний "МО" и "ООММ", повторяемых в любом порядке и любом количестве. Являются ли синонимами в языке Древнего Племени слова "ОММ" и "МОО"?
Прислать комментарий     Решение


Задача 30750

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 6,7,8

В алфавите языка племени УЫУ всего две буквы: У и Ы. Известно, что смысл слова не изменится
  если из слова выкинуть стоящие рядом буквы УЫ и
  при добавлении в любое место слова буквосочетания ЫУ или УУЫЫ.
Можно ли утверждать, что слова УЫЫ и ЫУУ имеют одинаковый смысл?

Прислать комментарий     Решение

Задача 30752

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 6,7,8

На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число  a + b – 1.
Какое число может остаться на доске после 19 таких операций?

Прислать комментарий     Решение

Задача 88309

Темы:   [ Инварианты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3-
Классы: 7,8

Круг разделен на 6 секторов, в котором по часовой стрелке стоят числа 1,0,1,0,0,0. Можно прибавлять по единице к любым числам, стоящим в двух соседних секторах. Можно ли сделать все числа равными?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .