ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что из 17 различных натуральных чисел либо найдутся пять таких чисел a, b, c, d, e, что каждое из чисел этой пятёрки, кроме последнего, делится на число, стоящее за ним, либо найдутся пять таких чисел, что ни одно из них не делится на другое. ![]() |
Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 2440]
Доказать, что из 17 различных натуральных чисел либо найдутся пять таких чисел a, b, c, d, e, что каждое из чисел этой пятёрки, кроме последнего, делится на число, стоящее за ним, либо найдутся пять таких чисел, что ни одно из них не делится на другое.
Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел: (8, 9), (288, 289).
Существует ли такое шестизначное число A, что среди чисел A, 2A, ..., 500000A нет ни одного числа, оканчивающегося шестью одинаковыми цифрами?
а) Докажите для всех n > 2 неравенство б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех n > 2
Имеется много карточек, на каждой из которых записано натуральное число от 1 до n. Известно, что сумма чисел на всех карточках равна n!·k, где k – целое число. Докажите, что карточки можно разложить на k групп так, чтобы в каждой группе сумма чисел, записанных на карточках, равнялась n!.
Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 2440] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |