Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 177]
|
|
Сложность: 3 Классы: 7,8,9
|
Даны три действительных числа: a, b и c. Известно, что a + b + c > 0, ab + bc + ca > 0, abc > 0. Докажите, что a > 0, b > 0 и c > 0.
Даны три неотрицательных числа a, b, c. Про них известно, что
a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
а) Докажите, что каждое из них не больше суммы двух других.
б) Докажите, что a² + b² + c² ≤ 2(ab + bc + ca).
в) Следует ли из неравенства пункта б) исходное неравенство?
|
|
Сложность: 3 Классы: 8,9,10
|
Известно, что 0 < a, b, c, d < 1 и abcd = (1 – a)(1 – b)(1 – c)(1 – d). Докажите, что (a + b + c + d) – (a + c)(b + d) ≥ 1.
k, l, m – натуральные числа. Докажите, что 2k+l + 2k+m + 2l+m ≤ 2k+l+m+1 + 1.
Докажите, что при любых x и y.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 177]