ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста таких, угловая мера которых не превышает 120°.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 123]      



Задача 79259

Темы:   [ Степень вершины ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Шахматные доски и шахматные фигуры ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10

На бесконечной шахматной доске проведена замкнутая несамопересекающаяся ломаная, проходящая по сторонам клеток. Внутри ломаной оказалось k чёрных клеток. Какую наибольшую площадь может иметь фигура, ограниченная этой ломаной?

Прислать комментарий     Решение

Задача 97920

Темы:   [ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 8,9,10,11

На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста таких, угловая мера которых не превышает 120°.

Прислать комментарий     Решение

Задача 98089

Темы:   [ Степень вершины ]
[ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Автор: Фомин С.В.

В королевстве восемь городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в любой другой, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более k дорог. При каких k это возможно?

Прислать комментарий     Решение

Задача 98170

Темы:   [ Степень вершины ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Петя заметил, что у всех его 25 одноклассников различное число друзей в этом классе. Сколько друзей у Пети?

Прислать комментарий     Решение

Задача 107986

Темы:   [ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в этом классе. Сколько друзей у Пети?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 123]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .