ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть m, n и k – натуральные числа, причём  m > n.  Какое из двух чисел больше:

    или  

(В каждом выражении k знаков квадратного корня, m и n чередуются.)

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 328]      



Задача 98550

Темы:   [ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 9,10,11

Существуют ли такие натуральные числа  a1 < a2 < a3 < ... < a100,  что  НОК(a1, a2) > НОК(a2, a3) > ... > НОК(a99, a100)?

Прислать комментарий     Решение

Задача 116427

Темы:   [ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

  а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?
  А если богатырей
  б) десять?
  в) тридцать три?

Прислать комментарий     Решение

Задача 116996

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?

Прислать комментарий     Решение

Задача 98129

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Иррациональные неравенства ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

Пусть m, n и k – натуральные числа, причём  m > n.  Какое из двух чисел больше:

    или  

(В каждом выражении k знаков квадратного корня, m и n чередуются.)

Прислать комментарий     Решение

Задача 30794

Темы:   [ Деревья ]
[ Принцип крайнего (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

В стране 100 городов, некоторые из которых соединены авиалиниями. Известно, что от каждого города можно долететь до любого другого (возможно, с пересадками). Докажите, что можно побывать во всех городах, совершив не более  а) 198 перёлетов;  б) 196 перелётов.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 328]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .