ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.
Укажите такое наименьшее число A, что в любом таком наборе чисел каждое из чисел не превышает A.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]      



Задача 79380

Темы:   [ Линейные неравенства и системы неравенств ]
[ Средние величины ]
Сложность: 3
Классы: 9

Доказать, что если  a1a2a3 ≤ ... ≤ a10,  то   1/6 (a1 + ... + a6) ≤ 1/10 (a1 + ... + a10).

Прислать комментарий     Решение

Задача 79510

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 9

Доказать, что если  a > b > 0  и  x/a < y/b,  то справедливо неравенство  

Прислать комментарий     Решение

Задача 88101

Темы:   [ Линейные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 5,6,7

Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

Прислать комментарий     Решение

Задача 98126

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 8,9

Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не превышает 103°.
Назовите такое наибольшее число A, что при любом таком разбиении каждая из семи дуг содержит не меньше A°.

Прислать комментарий     Решение

Задача 98136

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 7,8,9

По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.
Укажите такое наименьшее число A, что в любом таком наборе чисел каждое из чисел не превышает A.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .