ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Имеется шоколадка с пятью продольными и восемью поперечными углублениями, по которым её можно ломать (всего получается 9·6 = 54 дольки). Играют двое, ходят по очереди. Играющий за свой ход отламывает от шоколадки полоску ширины 1 и съедает её. Другой играющий за свой ход делает то же самое с оставшейся частью, и т. д. Тот, кто разламывает полоску ширины 2 на две полоски ширины 1, съедает одну из них, а другую съедает его партнер. Докажите, что начинающий игру может действовать таким образом, что ему достанется по крайней мере на 6 долек больше, чем второму. ![]() |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 737]
Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?
Первоначально на доске написано натуральное число A. Разрешается прибавить к нему один из его делителей, отличных от него самого и единицы. С полученным числом разрешается проделать аналогичную операцию, и т. д. Докажите, что из числа A = 4 можно с помощью таких операций прийти к любому наперёд заданному составному числу.
Имеется шоколадка с пятью продольными и восемью поперечными углублениями, по которым её можно ломать (всего получается 9·6 = 54 дольки). Играют двое, ходят по очереди. Играющий за свой ход отламывает от шоколадки полоску ширины 1 и съедает её. Другой играющий за свой ход делает то же самое с оставшейся частью, и т. д. Тот, кто разламывает полоску ширины 2 на две полоски ширины 1, съедает одну из них, а другую съедает его партнер. Докажите, что начинающий игру может действовать таким образом, что ему достанется по крайней мере на 6 долек больше, чем второму.
На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Двое играют в крестики-нолики на доске 10×10 по следующим правилам. Сначала они заполняют крестиками и ноликами всю доску, ставя их по очереди (начинающий игру ставит крестики, его партнер – нолики). Затем подсчитываются два числа: K – число пятерок подряд стоящих крестиков и H – число пятерок подряд стоящих ноликов. (Считаются пятерки, стоящие по горизонтали, по вертикали и параллельно диагонали; если подряд стоят шесть крестиков, то это даёт две пятерки, если семь, то три и т. д.) Число K – H считается выигрышем первого игрока (проигрышем второго).
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |