ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.

   Решение

Задачи

Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 2440]      



Задача 79401

Темы:   [ Делимость чисел. Общие свойства ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 11

Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
(p – натуральное число). Доказать, что n! делится на p.

Прислать комментарий     Решение

Задача 88335

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

Можно ли в кружочках расставить все цифры от 0 до 9 так, чтобы сумма трёх чисел по любому из шести отрезков была бы одной и той же?

Прислать комментарий     Решение

Задача 98028

Темы:   [ Уравнения в целых числах ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9

Дано натуральное число n. Рассматриваются такие тройки различных натуральных чисел  (a, b, c),  что  a + b + c = n.  Возьмём наибольшую возможную такую систему троек, что никакие две тройки системы не имеют общих элементов. Число троек в этой системе обозначим через K(n). Докажите, что
  а)  K(n) > n/6 – 1;
  б)  K(n) < 2n/9.

Прислать комментарий     Решение

Задача 98036

Темы:   [ Произведения и факториалы ]
[ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Задачи с ограничениями ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

Рассмотрим все возможные наборы чисел из множества  {1, 2, 3, ..., n},  не содержащие двух соседних чисел.
Докажите, что сумма квадратов произведений чисел в этих наборах равна  (n + 1)! – 1.

Прислать комментарий     Решение

Задача 98236

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9

Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.

Прислать комментарий     Решение

Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .