ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 [Всего задач: 11]      



Задача 111832

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Покрытия ]
[ Тетраэдр (прочее) ]
[ Шар и его части ]
Сложность: 6+
Классы: 10,11

Дана треугольная пирамида. Леша хочет выбрать два ее скрещивающихся ребра и на них, как на диаметрах, построить шары. Всегда ли он может выбрать такую пару, что любая точка пирамиды лежит хотя бы в одном из этих шаров?
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .