ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Играют двое. Первый выписывает в строку слева направо цифры, произвольно чередуя 0 и 1, пока цифр не станет всего 1999. Каждый раз после того, как первый выписал очередную цифру, второй меняет между собой две цифры из уже написанного ряда (когда написана только одна цифра, второй пропускает ход). Всегда ли второй может добиться того, чтобы после его последнего хода расположение цифр было симметричным относительно средней цифры? ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77]
На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?
В тетраэдре ABCD плоские углы BAD и BCD – тупые. Сравните длины ребер AC и BD.
Известно, что в тетраэдре ABCD окружности, вписанные в грани ABC и BCD, касаются.
Вася разобрал каркас треугольной пирамиды в кабинете математики и хочет из её шести рёбер составить два треугольника так, чтобы каждое ребро являлось стороной ровно одного треугольника. Всегда ли Вася сможет это сделать?
Существует ли тетраэдр, все грани которого — равные прямоугольные треугольники?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |