ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Играют двое. Первый выписывает в строку слева направо цифры, произвольно чередуя 0 и 1, пока цифр не станет всего 1999. Каждый раз после того, как первый выписал очередную цифру, второй меняет между собой две цифры из уже написанного ряда (когда написана только одна цифра, второй пропускает ход). Всегда ли второй может добиться того, чтобы после его последнего хода расположение цифр было симметричным относительно средней цифры?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77]      



Задача 97902

Темы:   [ Тетраэдр (прочее) ]
[ Векторы (прочее) ]
[ Вспомогательные проекции ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?

Прислать комментарий     Решение

Задача 116443

Темы:   [ Тетраэдр (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Неравенства с медианами ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

В тетраэдре ABCD плоские углы BAD и BCD – тупые. Сравните длины ребер AC и BD.

Прислать комментарий     Решение

Задача 35227

Темы:   [ Тетраэдр (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 10,11

Известно, что в тетраэдре ABCD окружности, вписанные в грани ABC и BCD, касаются.
Докажите, что окружности, вписанные в грани ABD и ACD, также касаются.

Прислать комментарий     Решение

Задача 65915

Темы:   [ Тетраэдр (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 10,11

Вася разобрал каркас треугольной пирамиды в кабинете математики и хочет из её шести рёбер составить два треугольника так, чтобы каждое ребро являлось стороной ровно одного треугольника. Всегда ли Вася сможет это сделать?

Прислать комментарий     Решение

Задача 105182

Темы:   [ Тетраэдр (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 10,11

Существует ли тетраэдр, все грани которого — равные прямоугольные треугольники?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .