Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что если корни многочлена f(x) = x³ + ax² + bx + c образуют правильный треугольник на комплексной плоскости, то многочлен
f'(x) = 3x² + 2ax + b имеет двукратный корень, расположенный в центре этого треугольника.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что корни уравнения где a, b, c – попарно различные комплексные числа, лежат внутри треугольника с вершинами в точках a, b, c, или на его сторонах (в случае вырожденного треугольника).
|
|
Сложность: 4 Классы: 10,11
|
Пусть f(x) = (x – a)(x – b)(x – c) – многочлен третьей степени с комплексными корнями a, b, c.
Докажите, что корни производной этого многочлена лежат внутри треугольника с вершинами в точках a, b, c.
[Теорема Гаусса-Люка]
|
|
Сложность: 4 Классы: 10,11
|
Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M.
Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]