ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1.

Вниз   Решение


Неправдоподобная легенда гласит, что однажды Стирлинг размышлял над числами Стирлинга второго рода и в задумчивости бросал на стол 10 правильных игральных костей. После очередного броска он вдруг заметил, что в выпавшей комбинации очков присутствуют все числа от 1 до 6. Тут же Стирлинг задумался, а какова же вероятность такого события? Какова вероятность, что при бросании 10 костей каждое число очков от 1 до 6 выпадет хотя бы на одной кости?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 94]      



Задача 87189

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) . Составьте уравнение плоскости MNK .
Прислать комментарий     Решение


Задача 87190

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L (3;2;1). Составьте уравнение плоскости, проходящей через точку L параллельно плоскости MNK .
Прислать комментарий     Решение


Задача 87192

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
Сложность: 3
Классы: 10,11

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите острый угол между плоскостями MNK и NKL .
Прислать комментарий     Решение


Задача 87193

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите угол между прямой MN и плоскостью NKL .
Прислать комментарий     Решение


Задача 87196

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 10,11

Даны точки A(-3;0;1) , B(2;1;-1) , C(-2;2;0) . Составьте уравнение плоскости ABC .
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 94]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .