ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 2440]      



Задача 30940

Темы:   [ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 6,7,8

В выражении  1*2*3*...*9  звёздочки заменяют на минус или плюс.
  a) Может ли получиться 0?
  б) Может ли получиться 1?
  в) Какие числа могут получиться?

Прислать комментарий     Решение

Задача 30949

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

По окружности стоят 239 точек двух цветов. Доказать, что найдутся две точки одного цвета, разделённые ровно двумя точками.

Прислать комментарий     Решение

Задача 30951

Темы:   [ Четность и нечетность ]
[ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8

В таблице 25×25 расставлены целые числа так, что в каждом столбце и в каждой строчке встречаются все числа от 1 до 25. При этом таблица симметрична относительно главной диагонали. Доказать, что на главной диагонали все числа от 1 до 25 встречаются по одному разу.

Прислать комментарий     Решение

Задача 30954

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам.
Доказать, что сумма этих произведений не равна нулю.

Прислать комментарий     Решение

Задача 30955

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 6,7,8

По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число, у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз.
  a) Могут ли все числа стать нулями, если их 13 штук?   б) Могут ли все числа стать единицами, если их 14 штук?

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .