Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 233]
|
|
Сложность: 3+ Классы: 10,11
|
Вавилонский алгоритм вычисления
.
Последовательность чисел {
xn} задана
условиями:
x1 = 1,
xn + 1 =
xn +
(
n 1).
Докажите, что
xn =
.
|
|
Сложность: 3+ Классы: 10,11
|
К чему будет стремиться последовательность из предыдущей
задачи
9.46, если в качестве начального условия выбрать
x1 = - 1?
|
|
Сложность: 4- Классы: 10,11
|
Итерационная формула
Герона.
Докажите, что
последовательность чисел {
xn}, заданная условиями
сходится. Найдите предел этой последовательности.
|
|
Сложность: 4- Классы: 10,11
|
Алгоритм приближенного вычисления
. Последовательность {
an} определяется условиями:
a0 =
a > 0,
an + 1 =
2
an +
(
n 0).
Докажите, что
an =
.
|
|
Сложность: 4- Классы: 10,11
|
Найдите предел последовательности, которая
задана условиями
a1 = 2,
an + 1 =
+
(
n 1).
Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 233]