ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 233]      



Задача 65505

Темы:   [ Текстовые задачи (прочее) ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 7,8,9

Сорока-ворона кашу варила, деток кормила. Третьему птенцу досталось столько же каши, сколько первым двум вместе взятым. Четвёртому – столько же, сколько второму и третьему. Пятому – столько же, сколько третьему и четвёртому. Шестому – столько же, сколько четвёртому и пятому. А седьмому не досталось – каша кончилась! Известно, что пятый птенец получил 10 г каши. Сколько каши сварила сорока-ворона?

Прислать комментарий     Решение

Задача 78515

Темы:   [ Арифметика остатков (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 7,8,9

Последовательность a0, a1, a2, ... образована по закону:  a0 = a1 = 1,  an+1 = anan–1 + 1.  Доказать, что число a1964 не делится на 4.

Прислать комментарий     Решение

Задача 98189

Темы:   [ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 6,7,8

В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом A первой строчки пишется число, равное количеству чисел первой строчки, которые больше A и при этом стоят правее A. По второй строчке аналогично строится третья строчка и т. д.
  а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).
  б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?

Прислать комментарий     Решение

Задача 98217

Темы:   [ Исследование квадратного трехчлена ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 9,10

Последовательность натуральных чисел  a1, a2, ..., an, ...  такова, что для каждого n уравнение  an+2x² + an+1x + an = 0  имеет действительный корень. Может ли число членов этой последовательности быть
  а) равным 10;
  б) бесконечным?

Прислать комментарий     Решение

Задача 98234

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Числа Фибоначчи ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9,10

Можно ли из последовательности  1, ½, ⅓, ... выбрать (сохраняя порядок)
  а) сто чисел,
  б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2ak–1)?

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .