ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 233]      



Задача 60580

Тема:   [ Числа Фибоначчи ]
Сложность: 3+
Классы: 9,10,11

Докажите, что число Фибоначчи Fn совпадает с ближайшим целым числом к  ,  то есть  Fn = + .

Прислать комментарий     Решение

Задача 61467

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 3+
Классы: 9,10,11

Докажите, что произвольная последовательность Qn, заданная условиями

Q0 = $\displaystyle \alpha$,    Q1 = $\displaystyle \beta$,    Qn + 2 = Qn + 1 + Qn    (n $\displaystyle \geqslant$ 0),

может быть выражена через числа Фибоначчи Fn и числа Люка Ln (определение чисел Люка смотри в задаче 3.133).

Прислать комментарий     Решение

Задача 78114

Темы:   [ Числа Фибоначчи ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9

Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности.

Прислать комментарий     Решение

Задача 78251

Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 10,11

Дана последовательность чисел F1, F2, ...;  F1 = F2 = 1  и   Fn+2 = Fn + Fn+1.  Доказать, что F5k делится на 5 при  k = 1, 2, ... .

Прислать комментарий     Решение

Задача 79332

Темы:   [ Рекуррентные соотношения ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 10,11

Последовательность натуральных чисел {xn} строится по следующему правилу:  x1 = 2,  xn+1 = [1,5xn].  Доказать, что в последовательности {xn} бесконечно много
  а) нечётных чисел;
  б) чётных чисел.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .