ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 590]      



Задача 64364

Тема:   [ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Автор: Храбров А.

Положительные числа a, b, c и d удовлетворяют условию   2(a + b + c + d) ≥ abcd.   Докажите, что  a² + b² + c² + d² ≥ abcd.

Прислать комментарий     Решение

Задача 64485

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Сумма восьми чисел равна 4/3. Оказалось, что сумма каждых семи чисел из этих восьми – положительна. Какое наименьшее целое значение может принимать наименьшее из данных чисел?

Прислать комментарий     Решение

Задача 65617

Темы:   [ Неравенство Коши ]
[ Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

Числа а, b и с лежат в интервале  (0, 1).  Докажите, что  a + b + c + 2abc > ab + bc + ca + 2.

Прислать комментарий     Решение

Задача 65849

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 9,10

Существует ли такое натуральное n, что десятичная запись числа 2n начинается цифрой 5, а десятичная запись числа 5n начинается цифрой 2?

Прислать комментарий     Решение

Задача 65853

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 9,10,11

Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .