ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 12601]      



Задача 53563

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3
Классы: 8,9

Найдите сумму внешних углов выпуклого n-угольника, взятых по одному при каждой вершине.

Прислать комментарий     Решение

Задача 53744

Тема:   [ Подобные треугольники ]
Сложность: 3
Классы: 8,9

В треугольнике ABC, стороны которого a, b и c даны, проведена параллельно AC прямая MN так, что  AM = BN.  Найдите MN.

Прислать комментарий     Решение

Задача 53756

Тема:   [ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
Найдите сторону квадрата.

Прислать комментарий     Решение

Задача 53763

Тема:   [ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. На продолжении стороны AC за точку C взята точка N, причём  CN = AC;  точка K – середина стороны AB.
В каком отношении прямая KN делит сторону BC?

Прислать комментарий     Решение

Задача 53773

Тема:   [ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 8,9

На сторонах AB и AC треугольника ABC взяты соответственно точки M и N, причём  MN || BC.  На отрезке MN взята точка P, причём  MP = 1/3 MN.  Прямая AP пересекает сторону BC в точке Q. Докажите, что  BQ = 1/3 BC.

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .