Страница:
<< 175 176 177 178
179 180 181 >> [Всего задач: 12601]
|
|
Сложность: 3 Классы: 10,11
|
Из всех выпуклых многоугольников, у которых одна сторона равна
a и сумма
внешних углов при вершинах, не прилегающих к этой стороне, равна
120
o,
выбрать многоугольник наибольшей площади.
Из квадрата размером 3 на 3 вырезать одну фигуру, которая представляет
развёртку полной поверхности куба, длина ребра которого равна 1.
Какие выпуклые фигуры могут содержать прямую?
Имеется замкнутая самопересекающаяся ломаная. Известно, что она пересекает
каждое свое звено ровно один раз. Докажите, что число звеньев чётно.
|
|
Сложность: 3 Классы: 8,9,10
|
Доказать, что на плоскости нельзя расположить больше четырёх выпуклых
многоугольников так, чтобы каждые два из них имели общую сторону.
Страница:
<< 175 176 177 178
179 180 181 >> [Всего задач: 12601]