ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 12601]      



Задача 77923

Тема:   [ Многоугольники (экстремальные свойства) ]
Сложность: 3
Классы: 10,11

Из всех выпуклых многоугольников, у которых одна сторона равна a и сумма внешних углов при вершинах, не прилегающих к этой стороне, равна 120o, выбрать многоугольник наибольшей площади.
Прислать комментарий     Решение


Задача 78000

Темы:   [ Свойства разверток ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Из квадрата размером 3 на 3 вырезать одну фигуру, которая представляет развёртку полной поверхности куба, длина ребра которого равна 1.
Прислать комментарий     Решение


Задача 78032

Тема:   [ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3
Классы: 9

Какие выпуклые фигуры могут содержать прямую?
Прислать комментарий     Решение


Задача 78062

Темы:   [ Ломаные ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Имеется замкнутая самопересекающаяся ломаная. Известно, что она пересекает каждое свое звено ровно один раз. Докажите, что число звеньев чётно.

Прислать комментарий     Решение

Задача 78149

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что на плоскости нельзя расположить больше четырёх выпуклых многоугольников так, чтобы каждые два из них имели общую сторону.
Прислать комментарий     Решение


Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .