Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 737]
|
|
Сложность: 3+ Классы: 8,9,10
|
Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом
увеличении разность между новым и старым значениями числа была бы больше нуля,
но меньше старого значения. Начальное значение числа равно 2. Выигравшим
считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?
|
|
Сложность: 3+ Классы: 7,8,9
|
Первоначально на доске написано натуральное число A. Разрешается прибавить к нему один из его делителей, отличных от него самого и единицы. С полученным числом разрешается проделать аналогичную операцию, и т. д. Докажите, что из числа A = 4 можно с помощью таких операций прийти к любому наперёд заданному составному числу.
|
|
Сложность: 3+ Классы: 7,8,9
|
Имеется шоколадка с пятью продольными и восемью поперечными углублениями,
по которым её можно ломать (всего получается 9·6 = 54 дольки). Играют двое, ходят по очереди. Играющий за свой ход отламывает от шоколадки полоску ширины 1 и съедает её. Другой играющий за свой ход делает то же самое с оставшейся частью, и т. д. Тот, кто разламывает полоску ширины 2 на две полоски ширины 1, съедает одну из них, а другую съедает его партнер. Докажите, что начинающий игру может действовать таким образом, что ему достанется по крайней мере на 6 долек больше, чем второму.
|
|
Сложность: 3+ Классы: 6,7,8
|
На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка P внутри квадрата?
|
|
Сложность: 3+ Классы: 6,7,8
|
Двое играют в крестики-нолики на доске 10×10 по следующим правилам. Сначала они заполняют крестиками и ноликами всю доску, ставя их по очереди (начинающий игру ставит крестики, его партнер – нолики). Затем подсчитываются два числа: K – число пятерок подряд стоящих крестиков и H – число пятерок подряд стоящих ноликов. (Считаются пятерки, стоящие по горизонтали, по вертикали и параллельно диагонали; если подряд стоят шесть крестиков, то это даёт две пятерки, если семь, то три и т. д.) Число K – H считается выигрышем первого игрока (проигрышем второго).
а) Существует ли у первого игрока беспроигрышная стратегия?
б) Существует ли у него выигрышная стратегия?
Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 737]