Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 154]
|
|
Сложность: 3 Классы: 7,8,9
|
Имеется 68 монет, причём известно, что любые две монеты различаются по весу.
За 100 взвешиваний на двухчашечных весах без гирь найти самую тяжелую и самую
лёгкую монеты.
Есть 40 гирек массой 1 г, 2 г, ..., 40 г. Из них выбрали 10 гирь чётной массы и положили на левую чашу весов. Затем выбрали 10 гирь нечётной массы и положили на правую чашу весов. Весы оказались в равновесии. Докажите, что на какой-нибудь чаше есть две гири с разностью масс в 20 г.
Перед гномом лежат три кучки бриллиантов: 17, 21 и 27 штук. В одной из кучек лежит один фальшивый бриллиант. Все бриллианты имеют одинаковый вид, все настоящие бриллианты весят одинаково, а фальшивый отличается от них по весу. У гнома есть чашечные весы без гирь. Гному надо за одно взвешивание найти кучку, в которой все бриллианты настоящие. Как это сделать?
|
|
Сложность: 3 Классы: 7,8,9
|
Из 11 шаров 2 радиоактивны. Про любой набор шаров за одну проверку можно
узнать, имеется ли в нем хотя бы один радиоактивный шар (но нельзя узнать,
сколько их). Можно ли за 7 проверок найти оба радиоактивных шара?
|
|
Сложность: 3 Классы: 6,7,8
|
4 монеты. Из четырех монет одна
фальшивая (она отличается по весу от настоящей, но не известно, в
какую сторону). Требуется за два взвешивания на двухчашечных
весах без гирь найти фальшивую монету.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 154]