ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 411]      



Задача 79371

Темы:   [ Математическая логика (прочее) ]
[ Индукция (прочее) ]
Сложность: 5+
Классы: 10,11

На химической конференции присутствовало k учёных химиков и алхимиков, причём химиков было больше, чем алхимиков. Известно, что на любой вопрос химики всегда отвечают правду, а алхимики иногда говорят правду, а иногда лгут. Оказавшийся на конференции математик про каждого учёного хочет установить, химик тот или алхимик. Для этого он любому учёному может задать вопрос: "Кем является такой-то: химиком или алхимиком?" (В частности, может спросить, кем является сам этот учёный.) Доказать, что математик может установить это за 2k − 3 вопросов.
Прислать комментарий     Решение


Задача 109568

Темы:   [ Системы точек ]
[ Индукция в геометрии ]
[ Полуинварианты ]
Сложность: 5+
Классы: 9,10,11

Автор: Мусин О.

На прямой отмечены n различных синих точек и n различных красных точек. Докажите, что сумма попарных расстояний между точками одного цвета не превосходит суммы попарных расстояний между точками разного цвета.
Прислать комментарий     Решение


Задача 79367

Темы:   [ Математическая логика (прочее) ]
[ Индукция (прочее) ]
Сложность: 6-
Классы: 9,10,11

На химической конференции присутствовало k учёных химиков и алхимиков, причём химиков было больше, чем алхимиков. Известно, что на любой вопрос химики всегда отвечают правду, а алхимики иногда говорят правду, а иногда лгут. Оказавшийся на конференции математик про каждого учёного хочет установить, химик тот или алхимик. Для этого он любому учёному может задать вопрос: ``Кем является такой-то: химиком или алхимиком?'' (В частности, может спросить, кем является сам этот учёный.) Доказать, что математик может установить это за: а) 4k вопросов; б) 2k - 2 вопросов.
Прислать комментарий     Решение


Задача 97806

Темы:   [ Комбинаторика (прочее) ]
[ Индукция в геометрии ]
[ Алгоритм Евклида ]
[ Соображения непрерывности ]
Сложность: 6
Классы: 9,10,11

k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и  kn  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.

Прислать комментарий     Решение

Задача 109822

Темы:   [ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
Сложность: 6+
Классы: 8,9,10,11

За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом.
Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .