Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 411]
|
|
Сложность: 5+ Классы: 10,11
|
На химической конференции присутствовало
k учёных химиков и алхимиков, причём химиков было больше, чем алхимиков. Известно, что на любой вопрос химики всегда отвечают правду, а алхимики иногда говорят правду, а иногда лгут. Оказавшийся на конференции математик про каждого учёного хочет установить, химик тот или алхимик. Для этого он любому учёному может задать вопрос: "Кем является такой-то: химиком или алхимиком?" (В частности, может спросить, кем
является сам этот учёный.) Доказать, что математик может установить это за
2
k − 3 вопросов.
|
|
Сложность: 5+ Классы: 9,10,11
|
На прямой отмечены
n различных синих точек и
n различных красных точек.
Докажите, что сумма попарных расстояний между точками одного цвета не превосходит суммы попарных
расстояний между точками разного цвета.
|
|
Сложность: 6- Классы: 9,10,11
|
На химической конференции присутствовало
k учёных химиков и алхимиков, причём
химиков было больше, чем алхимиков. Известно, что на любой вопрос химики всегда
отвечают правду, а алхимики иногда говорят правду, а иногда лгут. Оказавшийся
на конференции математик про каждого учёного хочет установить, химик тот или
алхимик. Для этого он любому учёному может задать вопрос: ``Кем является
такой-то: химиком или алхимиком?'' (В частности, может спросить, кем
является сам этот учёный.) Доказать, что математик может установить это за: а)
4
k вопросов; б) 2
k - 2 вопросов.
|
|
Сложность: 6 Классы: 9,10,11
|
k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и k ≤ n почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.
|
|
Сложность: 6+ Классы: 8,9,10,11
|
За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой.
Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от
каждой страны, и никакие двое из одной группы не сидят за столом рядом.
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 411]