ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья на тему "Индукция" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 411]
На какую максимальную степень тройки делится число, десятичная запись которого состоит из 3n единиц?
Докажите, что если плоскость разбита на части прямыми и окружностями, то получившуюся карту можно раскрасить в два цвета так, что части, граничащие по дуге или отрезку, будут разного цвета.
Докажите, что в выпуклом n-угольнике нельзя выбрать больше n диагоналей так, чтобы каждые две из них имели общую точку.
а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)? б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)? в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?
Докажите, что любое натуральное число можно представить в виде 3u12v1 + 3u22v2 + ... + 3uk2vk, где u1 > u2 > ... > uk ≥ 0 и 0 ≤ v1 < v2 < ... < vk – целые числа.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 411] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|