Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 288]
|
|
Сложность: 4 Классы: 10,11
|
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?
Изначально на доске записаны 10 последовательных натуральных чисел.
За одну операцию разрешается выбрать любые два числа на доске (обозначим их a и b) и заменить их на числа a² – 2011b² и ab. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?
У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?
|
|
Сложность: 4+ Классы: 9,10,11
|
а) Есть неограниченный набор карточек со словами "abc", "bca", "cab". Из них составляют слово по такому правилу. В качестве начального слова выбирается любая карточка, а далее на каждом шаге к имеющемуся слову можно либо приклеить карточку слева или справа, либо разрезать слово в любом месте (между буквами) и вклеить карточку туда. Можно ли так составить палиндром?
б) Есть неограниченный набор красных карточек со словами "abc", "bca", "cab" и синих карточек со словами "cba", "acb", "bac". Из них по тем же правилам составили палиндром. Верно ли, что было использовано одинаковое количество красных и синих карточек?
|
|
Сложность: 4+ Классы: 7,8,9
|
Круг разбит на n секторов, в некоторых секторах стоят фишки – всего фишек n + 1. Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы.
Докажите, что через некоторое число шагов не менее половины секторов будет
занято.
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 288]