Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 288]
|
|
Сложность: 4 Классы: 8,9,10
|
Марсианские
амебы II. При помощи ним-сумм (смотри задачу
5.76) можно исследовать самые разные
игры и процессы. Например, можно получить еще одно решение
задачи
4.20.
Постройте на множестве марсианских амеб
{
A,
B,
C} функцию
f, для которой выполнялись бы равенства
f (
A)
f (
B) =
f (
C),
f (
A)
f (
C) =
f (
B),
f (
B)
f (
C) =
f (
A).
Какие рассуждения остается провести, чтобы решить задачу про амеб?
|
|
Сложность: 4 Классы: 8,9,10
|
На доске было написано уравнение вида x² + px + q = 0 с целыми ненулевыми коэффициентами p и q. Временами к доске подходили разные школьники, стирали уравнение, после чего составляли и записывали уравнение такого же вида, корнями которого являются коэффициенты стёртого уравнения. В какой-то момент составленное уравнение совпало с тем, что было написано на доске изначально. Какое уравнение изначально было написано на доске?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Клетки шахматной доски 8×8 занумерованы по диагоналям, идущим влево вниз, от 1 в левом верхнем до 64 в правом нижнем углу: (см. рис.). Петя расставил на доске 8 фишек так, что на каждой горизонтали и на каждой вертикали оказалось по одной фишке. Затем он переставил фишки так, что каждая фишка попала на клетку с бóльшим номером. Могло ли по-прежнему в каждой строке и в каждом столбце оказаться по одной фишке?
|
|
Сложность: 4 Классы: 8,9,10
|
Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)
|
|
Сложность: 4 Классы: 8,9,10,11
|
На доске написаны 2$n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2$n$ последовательных чисел.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 288]