ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 288]      



Задача 60916

Темы:   [ Ним-сумма ]
[ Инварианты ]
Сложность: 4
Классы: 8,9,10

Марсианские амебы II. При помощи ним-сумм (смотри задачу 5.76) можно исследовать самые разные игры и процессы. Например, можно получить еще одно решение задачи 4.20.
Постройте на множестве марсианских амеб {ABC} функцию f, для которой выполнялись бы равенства

f (A) $\displaystyle \oplus$ f (B) = f (C),    f (A) $\displaystyle \oplus$ f (C) = f (B),    f (B) $\displaystyle \oplus$ f (C) = f (A).

Какие рассуждения остается провести, чтобы решить задачу про амеб?

Прислать комментарий     Решение

Задача 64192

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Инварианты ]
Сложность: 4
Классы: 8,9,10

На доске было написано уравнение вида  x² + px + q = 0  с целыми ненулевыми коэффициентами p и q. Временами к доске подходили разные школьники, стирали уравнение, после чего составляли и записывали уравнение такого же вида, корнями которого являются коэффициенты стёртого уравнения. В какой-то момент составленное уравнение совпало с тем, что было написано на доске изначально. Какое уравнение изначально было написано на доске?

Прислать комментарий     Решение

Задача 65579

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Полуинварианты ]
Сложность: 4
Классы: 8,9,10,11

Клетки шахматной доски 8×8 занумерованы по диагоналям, идущим влево вниз, от 1 в левом верхнем до 64 в правом нижнем углу: (см. рис.). Петя расставил на доске 8 фишек так, что на каждой горизонтали и на каждой вертикали оказалось по одной фишке. Затем он переставил фишки так, что каждая фишка попала на клетку с бóльшим номером. Могло ли по-прежнему в каждой строке и в каждом столбце оказаться по одной фишке?

Прислать комментарий     Решение

Задача 65744

Темы:   [ Замощения костями домино и плитками ]
[ Полуинварианты ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10

Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)

Прислать комментарий     Решение

Задача 66863

Темы:   [ Индукция (прочее) ]
[ Полуинварианты ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 4
Классы: 8,9,10,11

На доске написаны 2$n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2$n$ последовательных чисел.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 288]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .