Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 81]
|
|
Сложность: 3 Классы: 8,9,10
|
20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.
|
|
Сложность: 3+ Классы: 8,9,10
|
В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар.
Докажите, что после этого можно выбрать m команд, никакие две из которых ещё не играли между собой.
|
|
Сложность: 3+ Классы: 5,6,7,8
|
В Тридевятом царстве на каждом перекрёстке сходится ровно три дорожки. Было у царя три сына, старшие умные, а младший Иван – дурак. Послал старик сыновей за молодильными яблоками. Старший, выйдя из дворца, на первом перекрёстке свернул налево, на следующем направо, потом налево, снова направо – и дошёл до волшебной яблони. Средний на первом перекрёстке свернул направо, потом налево, снова направо, снова налево – и тоже дошёл до этой яблони. А Иван на всех перекрёстках поворачивал направо, три раза повернул да и пришёл обратно во дворец несолоно хлебавши. Нарисуйте пример, как может выглядеть схема дорожек в Тридевятом царстве, если известно, что и от царского дворца, и от яблони отходит ровно по одной дорожке.
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре
чисел, связанных ребром, одно из них делилось на другое, а во всех других парах
такого не было?
Среди участников олимпиады каждый знаком не менее чем с тремя другими. Докажите, что можно выбрать группу из чётного числа участников (больше двух человек) и посадить их за круглый стол так, чтобы каждый был знаком с обоими соседями.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 81]