ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 488]      



Задача 97946

Темы:   [ Наименьший или наибольший угол ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 4
Классы: 8,9

Три треугольника – белый, зелёный и красный – имеют общую внутреннюю точку M. Докажите, что можно выбрать по одной вершине из каждого треугольника так, чтобы точка M находилась внутри или на границе треугольника, образуемого выбранными вершинами.

Прислать комментарий     Решение

Задача 103857

Тема:   [ Принцип крайнего ]
Сложность: 4
Классы: 6,7,8

В вершинах куба ABCDEFGH расставлены натуральные числа так, что числа в соседних (по ребру) вершинах отличаются не более чем на единицу. Докажите, что обязательно найдутся две диаметрально противоположные вершины, числа в которых отличаются не более чем на единицу.

(Пары диаметрально противоположных вершин куба: A и G, B и H, C и E, D и F.)

Прислать комментарий     Решение


Задача 108996

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Системы точек ]
Сложность: 4
Классы: 7,8,9

На плоскости задано n точек. Известно, что среди любых трёх из них имеются две, расстояние между которыми не больше 1. Доказать, что на плоскость можно наложить два круга радиуса 1, которые закроют все эти точки.
Прислать комментарий     Решение


Задача 111873

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Системы алгебраических неравенств ]
Сложность: 4
Классы: 8,9,10

Найдите все такие тройки действительных чисел x, y, z, что  1 + x4 ≤ 2(y – z)² 1 + y4 ≤ 2(z – x)²,  1 + z4 ≤ 2(x – y)².

Прислать комментарий     Решение

Задача 65467

Темы:   [ Принцип крайнего (прочее) ]
[ Полуинварианты ]
Сложность: 4+
Классы: 8,9

У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .