ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 352]      



Задача 108938

Темы:   [ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD  ∠CAD + ∠BCA = 180°  и  AB = BC + AD.  Докажите, что  ∠BAC + ∠ACD = ∠CDA.

Прислать комментарий     Решение

Задача 111665

Темы:   [ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 8,9

На сторонах произвольного треугольника ABC внешним образом построены равнобедренные треугольники AC1B, BA1C, CB1A с углами 2α, 2β и 2γ при вершинах A1, B1 и C1, причём  α + β + γ = 180°.  Докажите, что углы треугольника A1B1C1 равны α, β и γ.

Прислать комментарий     Решение

Задача 111670

Темы:   [ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 8,9

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что  ∠B1OC1 = 180° – φ.

Прислать комментарий     Решение

Задача 115321

Темы:   [ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. На сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что  BF = 2CF,  CE = 2AE  и  ∠DEF = 90°.
Докажите, что  ∠ADE = ∠EDF.

Прислать комментарий     Решение

Задача 115921

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4
Классы: 8,9

Точка M взята на стороне AC равностороннего треугольника ABC, а на продолжении стороны BC за точку C отмечена точка N, причём  BM = MN.
Докажите, что  AM = CN.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .